cs.AI updates on arXiv.org 10月07日
AI可解释性:结构化论证与验证
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出利用结构化论证提供可验证推理链,以实现AI可解释性。通过将LLM文本转化为论证图,实现每一步推理的验证。实验结果表明,该方法在论证微文本关系分类任务上取得了显著的性能提升。

arXiv:2510.03442v1 Announce Type: cross Abstract: Humans are black boxes -- we cannot observe their neural processes, yet society functions by evaluating verifiable arguments. AI explainability should follow this principle: stakeholders need verifiable reasoning chains, not mechanistic transparency. We propose using structured argumentation to provide a level of explanation and verification neither interpretability nor LLM-generated explanation is able to offer. Our pipeline achieves state-of-the-art 94.44 macro F1 on the AAEC published train/test split (5.7 points above prior work) and $0.81$ macro F1, $\sim$0.07 above previous published results with comparable data setups, for Argumentative MicroTexts relation classification, converting LLM text into argument graphs and enabling verification at each inferential step. We demonstrate this idea on multi-agent risk assessment using the Structured What-If Technique, where specialized agents collaborate transparently to carry out risk assessment otherwise achieved by humans alone. Using Bipolar Assumption-Based Argumentation, we capture support/attack relationships, thereby enabling automatic hallucination detection via fact nodes attacking arguments. We also provide a verification mechanism that enables iterative refinement through test-time feedback without retraining. For easy deployment, we provide a Docker container for the fine-tuned AMT model, and the rest of the code with the Bipolar ABA Python package on GitHub.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI可解释性 结构化论证 验证 论证图 LLM
相关文章