cs.AI updates on arXiv.org 10月07日
多任务神经扩散过程在风力发电预测中的应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出将神经扩散过程应用于风力发电预测,并扩展至多任务框架,通过实证评估和任务编码实现跨机预测与适应,有效提升了预测准确性和可信度。

arXiv:2510.03419v1 Announce Type: cross Abstract: Uncertainty-aware wind power prediction is essential for grid integration and reliable wind farm operation. We apply neural diffusion processes (NDPs)-a recent class of models that learn distributions over functions-and extend them to a multi-task NDP (MT-NDP) framework for wind power prediction. We provide the first empirical evaluation of NDPs in real supervisory control and data acquisition (SCADA) data. We introduce a task encoder within MT-NDPs to capture cross-turbine correlations and enable few-shot adaptation to unseen turbines. The proposed MT-NDP framework outperforms single-task NDPs and GPs in terms of point accuracy and calibration, particularly for wind turbines whose behaviour deviates from the fleet average. In general, NDP-based models deliver calibrated and scalable predictions suitable for operational deployment, offering sharper, yet trustworthy, predictive intervals that can support dispatch and maintenance decisions in modern wind farms.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

风力发电 神经扩散过程 预测模型
相关文章