cs.AI updates on arXiv.org 10月07日 12:14
NEXUS:提升LLM对抗攻击成功率
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为NEXUS的模块化框架,用于构建、优化和执行多轮攻击。该框架通过ThoughtNet、反馈驱动的模拟器和网络遍历器,提高了LLM对抗攻击的成功率。

arXiv:2510.03417v1 Announce Type: cross Abstract: Large Language Models (LLMs) have revolutionized natural language processing but remain vulnerable to jailbreak attacks, especially multi-turn jailbreaks that distribute malicious intent across benign exchanges and bypass alignment mechanisms. Existing approaches often explore the adversarial space poorly, rely on hand-crafted heuristics, or lack systematic query refinement. We present NEXUS (Network Exploration for eXploiting Unsafe Sequences), a modular framework for constructing, refining, and executing optimized multi-turn attacks. NEXUS comprises: (1) ThoughtNet, which hierarchically expands a harmful intent into a structured semantic network of topics, entities, and query chains; (2) a feedback-driven Simulator that iteratively refines and prunes these chains through attacker-victim-judge LLM collaboration using harmfulness and semantic-similarity benchmarks; and (3) a Network Traverser that adaptively navigates the refined query space for real-time attacks. This pipeline uncovers stealthy, high-success adversarial paths across LLMs. On several closed-source and open-source LLMs, NEXUS increases attack success rate by 2.1% to 19.4% over prior methods. Code: https://github.com/inspire-lab/NEXUS

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 对抗攻击 NEXUS 多轮攻击 自然语言处理
相关文章