cs.AI updates on arXiv.org 10月07日
时空解耦自动编码器提升交通预测
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为时空解耦自动编码器(STDAE)的交通预测框架,解决高速公路互通立交交通预测中检测器缺乏的问题,通过跨模态预训练,实现高效的特征提取和预测,实验结果表明其性能优于现有方法。

arXiv:2510.03381v1 Announce Type: cross Abstract: Interchanges are crucial nodes for vehicle transfers between highways, yet the lack of real-time ramp detectors creates blind spots in traffic prediction. To address this, we propose a Spatio-Temporal Decoupled Autoencoder (STDAE), a two-stage framework that leverages cross-modal reconstruction pretraining. In the first stage, STDAE reconstructs historical ramp flows from mainline data, forcing the model to capture intrinsic spatio-temporal relations. Its decoupled architecture with parallel spatial and temporal autoencoders efficiently extracts heterogeneous features. In the prediction stage, the learned representations are integrated with models such as GWNet to enhance accuracy. Experiments on three real-world interchange datasets show that STDAE-GWNET consistently outperforms thirteen state-of-the-art baselines and achieves performance comparable to models using historical ramp data. This demonstrates its effectiveness in overcoming detector scarcity and its plug-and-play potential for diverse forecasting pipelines.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

时空解耦自动编码器 交通预测 高速公路互通立交 跨模态预训练
相关文章