cs.AI updates on arXiv.org 10月07日
InstructPLM-mu:预训练蛋白语言模型的优化调优框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为InstructPLM-mu的调优框架,旨在验证预训练、仅序列的蛋白语言模型通过多模态调优是否能达到端到端训练的模型性能。实验结果表明,通过结构输入对ESM2进行调优,可以达到与ESM3相当的性能。

arXiv:2510.03370v1 Announce Type: cross Abstract: Multimodal protein language models deliver strong performance on mutation-effect prediction, but training such models from scratch demands substantial computational resources. In this paper, we propose a fine-tuning framework called InstructPLM-mu and try to answer a question: \textit{Can multimodal fine-tuning of a pretrained, sequence-only protein language model match the performance of models trained end-to-end? } Surprisingly, our experiments show that fine-tuning ESM2 with structural inputs can reach performance comparable to ESM3. To understand how this is achieved, we systematically compare three different feature-fusion designs and fine-tuning recipes. Our results reveal that both the fusion method and the tuning strategy strongly affect final accuracy, indicating that the fine-tuning process is not trivial. We hope this work offers practical guidance for injecting structure into pretrained protein language models and motivates further research on better fusion mechanisms and fine-tuning protocols.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

蛋白质语言模型 模型调优 多模态学习
相关文章