cs.AI updates on arXiv.org 10月07日
跨模态统一异常检测:统一成本滤波框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种针对跨模态统一异常检测的统一成本滤波框架,有效降低匹配噪声,提高异常检测能力,在单模态和跨模态场景中均取得新突破。

arXiv:2510.03363v1 Announce Type: cross Abstract: Unsupervised anomaly detection (UAD) aims to identify image- and pixel-level anomalies using only normal training data, with wide applications such as industrial inspection and medical analysis, where anomalies are scarce due to privacy concerns and cold-start constraints. Existing methods, whether reconstruction-based (restoring normal counterparts) or embedding-based (pretrained representations), fundamentally conduct image- or feature-level matching to generate anomaly maps. Nonetheless, matching noise has been largely overlooked, limiting their detection ability. Beyond earlier focus on unimodal RGB-based UAD, recent advances expand to multimodal scenarios, e.g., RGB--3D and RGB--Text, enabled by point cloud sensing and vision--language models. Despite shared challenges, these lines remain largely isolated, hindering a comprehensive understanding and knowledge transfer. In this paper, we advocate unified UAD for both unimodal and multimodal settings in the matching perspective. Under this insight, we present Unified Cost Filtering (UCF), a generic post-hoc refinement framework for refining anomaly cost volume of any UAD model. The cost volume is constructed by matching a test sample against normal samples from the same or different modalities, followed by a learnable filtering module with multi-layer attention guidance from the test sample, mitigating matching noise and highlighting subtle anomalies. Comprehensive experiments on 22 diverse benchmarks demonstrate the efficacy of UCF in enhancing a variety of UAD methods, consistently achieving new state-of-the-art results in both unimodal (RGB) and multimodal (RGB--3D, RGB--Text) UAD scenarios. Code and models will be released at https://github.com/ZHE-SAPI/CostFilter-AD.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

异常检测 统一成本滤波 跨模态 图像分析 机器学习
相关文章