cs.AI updates on arXiv.org 10月07日
KVComm:高效LLM间通信框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出KVComm,一种基于KV对选择共享的LLM间通信框架,通过注意力重要性分数和高斯先验选择信息量最大的KV对,实现高效且信息损失小的通信。

arXiv:2510.03346v1 Announce Type: cross Abstract: Large Language Models (LLMs) are increasingly deployed in multi-agent systems, where effective inter-model communication is crucial. Existing communication protocols either rely on natural language, incurring high inference costs and information loss, or on hidden states, which suffer from information concentration bias and inefficiency. To address these limitations, we propose KVComm, a novel communication framework that enables efficient communication between LLMs through selective sharing of KV pairs. KVComm leverages the rich information encoded in the KV pairs while avoiding the pitfalls of hidden states. We introduce a KV layer-wise selection strategy based on attention importance scores with a Gaussian prior to identify the most informative KV pairs for communication. Extensive experiments across diverse tasks and model pairs demonstrate that KVComm achieves comparable performance to the upper-bound method, which directly merges inputs to one model without any communication, while transmitting as few as 30\% of layers' KV pairs. Our study highlights the potential of KV pairs as an effective medium for inter-LLM communication, paving the way for scalable and efficient multi-agent systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 通信框架 KV对 高效通信 多智能体系统
相关文章