cs.AI updates on arXiv.org 10月07日
智能医疗生态系统:重塑美国医疗三角
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种智能医疗生态系统,通过整合数据驱动框架、生成式AI、联邦学习等手段,优化医疗成本、质量和可及性,旨在打破美国医疗三角困境。

arXiv:2510.03331v1 Announce Type: cross Abstract: The United States spends nearly 17% of GDP on healthcare yet continues to face uneven access and outcomes. This well-known trade-off among cost, quality, and access - the "iron triangle" - motivates a system-level redesign. This paper proposes an Intelligent Healthcare Ecosystem (iHE): an integrated, data-driven framework that uses generative AI and large language models, federated learning, interoperability standards (FHIR, TEFCA), and digital twins to improve access and quality while lowering cost. We review historical spending trends, waste, and international comparisons; introduce a value equation that jointly optimizes access, quality, and cost; and synthesize evidence on the enabling technologies and operating model for iHE. Methods follow a narrative review of recent literature and policy reports. Results outline core components (AI decision support, interoperability, telehealth, automation) and show how iHE can reduce waste, personalize care, and support value-based payment while addressing privacy, bias, and adoption challenges. We argue that a coordinated iHE can bend - if not break - the iron triangle, moving the system toward care that is more accessible, affordable, and high quality.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

智能医疗 医疗成本 医疗质量 数据驱动
相关文章