cs.AI updates on arXiv.org 10月07日 12:14
LLM在运营管理中模拟人类行为研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文评估了大型语言模型(LLM)在运营管理中模拟人类行为的效果,通过比较LLM与人类数据的假设检验结果和Wasserstein距离分布,发现LLM能复制大部分假设层面的效果,但响应分布与人类数据存在偏差,并提出了两种轻量级干预措施以减少偏差。

arXiv:2510.03310v1 Announce Type: cross Abstract: LLMs are emerging tools for simulating human behavior in business, economics, and social science, offering a lower-cost complement to laboratory experiments, field studies, and surveys. This paper evaluates how well LLMs replicate human behavior in operations management. Using nine published experiments in behavioral operations, we assess two criteria: replication of hypothesis-test outcomes and distributional alignment via Wasserstein distance. LLMs reproduce most hypothesis-level effects, capturing key decision biases, but their response distributions diverge from human data, including for strong commercial models. We also test two lightweight interventions -- chain-of-thought prompting and hyperparameter tuning -- which reduce misalignment and can sometimes let smaller or open-source models match or surpass larger systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 运营管理 人类行为模拟 假设检验 Wasserstein距离
相关文章