cs.AI updates on arXiv.org 10月07日 12:14
EfficientNet与ViT在空间网络上的性能比较
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文对EfficientNet-B0和ViT-Base在空间网络上的性能进行了比较,分析了不同标签分布下的模型表现,并讨论了模型大小和延迟等部署指标。

arXiv:2510.03297v1 Announce Type: cross Abstract: We present a controlled comparison of a convolutional neural network (EfficientNet-B0) and a Vision Transformer (ViT-Base) on SpaceNet under two label-distribution regimes: a naturally imbalanced five-class split and a balanced-resampled split with 700 images per class (70:20:10 train/val/test). With matched preprocessing (224x224, ImageNet normalization), lightweight augmentations, and a 40-epoch budget on a single NVIDIA P100, we report accuracy, macro-F1, balanced accuracy, per-class recall, and deployment metrics (model size and latency). On the imbalanced split, EfficientNet-B0 reaches 93% test accuracy with strong macro-F1 and lower latency; ViT-Base is competitive at 93% with a larger parameter count and runtime. On the balanced split, both models are strong; EfficientNet-B0 reaches 99% while ViT-Base remains competitive, indicating that balancing narrows architecture gaps while CNNs retain an efficiency edge. We release manifests, logs, and per-image predictions to support reproducibility.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

EfficientNet ViT 空间网络 性能比较 模型部署
相关文章