cs.AI updates on arXiv.org 10月07日
基于Hebbian规则的认知地图构建方法
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于Hebbian规则的认知地图构建方法,通过局部学习规则实现记忆结构化,并结合Successor Features框架,在部分可观察网格世界中验证了其有效性。

arXiv:2510.03286v1 Announce Type: cross Abstract: Cognitive maps provide a powerful framework for understanding spatial and abstract reasoning in biological and artificial agents. While recent computational models link cognitive maps to hippocampal-entorhinal mechanisms, they often rely on global optimization rules (e.g., backpropagation) that lack biological plausibility. In this work, we propose a novel cognitive architecture for structuring episodic memories into cognitive maps using local, Hebbian-like learning rules, compatible with neural substrate constraints. Our model integrates the Successor Features framework with episodic memories, enabling incremental, online learning through agent-environment interaction. We demonstrate its efficacy in a partially observable grid-world, where the architecture autonomously organizes memories into structured representations without centralized optimization. This work bridges computational neuroscience and AI, offering a biologically grounded approach to cognitive map formation in artificial adaptive agents.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

认知地图 Hebbian规则 Successor Features 局部学习 网格世界
相关文章