cs.AI updates on arXiv.org 10月07日 12:13
B-PINNs网络物理约束影响解析
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种可扩展的Laplace框架,用于分解B-PINNs网络的后验Hessian,量化物理约束对损失景观的相对影响,并通过Van der Pol方程实例展示约束如何塑造网络几何结构。

arXiv:2510.03278v1 Announce Type: cross Abstract: Bayesian physics-informed neural networks (B-PINNs) merge data with governing equations to solve differential equations under uncertainty. However, interpreting uncertainty and overconfidence in B-PINNs requires care due to the poorly understood effects the physical constraints have on the network; overconfidence could reflect warranted precision, enforced by the constraints, rather than miscalibration. Motivated by the need to further clarify how individual physical constraints shape these networks, we introduce a scalable, matrix-free Laplace framework that decomposes the posterior Hessian into contributions from each constraint and provides metrics to quantify their relative influence on the loss landscape. Applied to the Van der Pol equation, our method tracks how constraints sculpt the network's geometry and shows, directly through the Hessian, how changing a single loss weight non-trivially redistributes curvature and effective dominance across the others.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

B-PINNs 物理约束 Laplace框架 损失景观 网络几何
相关文章