cs.AI updates on arXiv.org 10月07日 12:13
Synergistic Information Distillation:新型深度学习训练框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出Synergistic Information Distillation(SID)训练框架,通过将深度学习视为一系列局部合作优化问题,解决反向传播中的更新锁定和内存消耗问题,实现并行训练,提升模型性能。

arXiv:2510.03273v1 Announce Type: cross Abstract: Backpropagation (BP), while foundational to deep learning, imposes two critical scalability bottlenecks: update locking, where network modules remain idle until the entire backward pass completes, and high memory consumption due to storing activations for gradient computation. To address these limitations, we introduce Synergistic Information Distillation (SID), a novel training framework that reframes deep learning as a cascade of local cooperative refinement problems. In SID, a deep network is structured as a pipeline of modules, each imposed with a local objective to refine a probabilistic belief about the ground-truth target. This objective balances fidelity to the target with consistency to the belief from its preceding module. By decoupling the backward dependencies between modules, SID enables parallel training and hence eliminates update locking and drastically reduces memory requirements. Meanwhile, this design preserves the standard feed-forward inference pass, making SID a versatile drop-in replacement for BP. We provide a theoretical foundation, proving that SID guarantees monotonic performance improvement with network depth. Empirically, SID consistently matches or surpasses the classification accuracy of BP, exhibiting superior scalability and pronounced robustness to label noise.Code is available at: https://github.com/ychAlbert/sid-bp

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 训练框架 Synergistic Information Distillation 反向传播 并行训练
相关文章