cs.AI updates on arXiv.org 10月07日 12:12
轻量级扩散编码器CoDA发布
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为CoDA的轻量级扩散编码器,其通过大规模扩散预训练、代码中心的中训练和指令调整,实现高效采样,在多个基准测试中优于或等于更大参数的扩散模型。

arXiv:2510.03270v1 Announce Type: cross Abstract: Diffusion language models promise bidirectional context and infilling capabilities that autoregressive coders lack, yet practical systems remain heavyweight. We introduce CoDA, a 1.7B-parameter diffusion coder trained on TPU with a fully open-source training pipeline. CoDA pairs large-scale diffusion pre-training with code-centric mid-training and instruction tuning, enabling confidence-guided sampling that keeps inference latency competitive. On Humaneval, MBPP, and EvalPlus, CoDA-1.7B-Instruct matches or surpasses diffusion models up to 7B parameters. Our release includes model checkpoints, evaluation harnesses, and TPU training pipelines to accelerate research on lightweight diffusion-based coding assistants.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

轻量级扩散编码器 CoDA 扩散模型 代码中心训练 指令调整
相关文章