cs.AI updates on arXiv.org 10月07日
多模态对比学习中的模态间隙分析
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出分析多模态对比学习中的模态间隙,揭示其根本原因及对下游任务的影响,并提出解决方法。

arXiv:2510.03268v1 Announce Type: cross Abstract: Multimodal contrastive learning (MCL) aims to embed data from different modalities in a shared embedding space. However, empirical evidence shows that representations from different modalities occupy completely separate regions of embedding space, a phenomenon referred to as the modality gap. Moreover, experimental findings on how the size of the modality gap influences downstream performance are inconsistent. These observations raise two key questions: (1) What causes the modality gap? (2) How does it affect downstream tasks? To address these questions, this paper introduces the first theoretical framework for analyzing the convergent optimal representations of MCL and the modality alignment when training is optimized. Specifically, we prove that without any constraint or under the cone constraint, the modality gap converges to zero. Under the subspace constraint (i.e., representations of two modalities fall into two distinct hyperplanes due to dimension collapse), the modality gap converges to the smallest angle between the two hyperplanes. This result identifies \emph{dimension collapse} as the fundamental origin of the modality gap. Furthermore, our theorems demonstrate that paired samples cannot be perfectly aligned under the subspace constraint. The modality gap influences downstream performance by affecting the alignment between sample pairs. We prove that, in this case, perfect alignment between two modalities can still be achieved via two ways: hyperplane rotation and shared space projection.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多模态对比学习 模态间隙 理论框架 性能影响
相关文章