cs.AI updates on arXiv.org 10月07日 12:12
概念树框架:深度模型可解释AI新突破
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了基于因果推断的概念树框架,该框架可重构深度模型中概念层次的涌现,揭示概念如何从共享表示中分化,并广泛应用于医疗诊断、物理推理和政治决策等领域。

arXiv:2510.03265v1 Announce Type: cross Abstract: Large-scale foundation models demonstrate strong performance across language, vision, and reasoning tasks. However, how they internally structure and stabilize concepts remains elusive. Inspired by causal inference, we introduce the MindCraft framework built upon Concept Trees. By applying spectral decomposition at each layer and linking principal directions into branching Concept Paths, Concept Trees reconstruct the hierarchical emergence of concepts, revealing exactly when they diverge from shared representations into linearly separable subspaces. Empirical evaluations across diverse scenarios across disciplines, including medical diagnosis, physics reasoning, and political decision-making, show that Concept Trees recover semantic hierarchies, disentangle latent concepts, and can be widely applied across multiple domains. The Concept Tree establishes a widely applicable and powerful framework that enables in-depth analysis of conceptual representations in deep models, marking a significant step forward in the foundation of interpretable AI.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

概念树 深度学习 可解释AI 语义层次 多领域应用
相关文章