cs.AI updates on arXiv.org 10月07日
零样本学习中的语义空间优化
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种在零样本学习中的语义空间优化方法,通过模拟未见条件下的归纳设置,评估属性的相关性,并研究两种互补的特征选择策略,以减少冗余并提高未见类别的准确率。

arXiv:2510.03260v1 Announce Type: cross Abstract: Zero-Shot Learning is an important paradigm within General-Purpose Artificial Intelligence Systems, particularly in those that operate in open-world scenarios where systems must adapt to new tasks dynamically. Semantic spaces play a pivotal role as they bridge seen and unseen classes, but whether human-annotated or generated by a machine learning model, they often contain noisy, redundant, or irrelevant attributes that hinder performance. To address this, we introduce a partitioning scheme that simulates unseen conditions in an inductive setting (which is the most challenging), allowing attribute relevance to be assessed without access to semantic information from unseen classes. Within this framework, we study two complementary feature-selection strategies and assess their generalisation. The first adapts embedded feature selection to the particular demands of ZSL, turning model-driven rankings into meaningful semantic pruning; the second leverages evolutionary computation to directly explore the space of attribute subsets more broadly. Experiments on five benchmark datasets (AWA2, CUB, SUN, aPY, FLO) show that both methods consistently improve accuracy on unseen classes by reducing redundancy, but in complementary ways: RFS is efficient and competitive though dependent on critical hyperparameters, whereas GA is more costly yet explores the search space more broadly and avoids such dependence. These results confirm that semantic spaces are inherently redundant and highlight the proposed partitioning scheme as an effective tool to refine them under inductive conditions.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

零样本学习 语义空间 特征选择 进化计算 归纳设置
相关文章