cs.AI updates on arXiv.org 10月07日
分层偏好学习提升LLM自主能力
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种分层偏好学习(HPL)框架,通过多粒度偏好信号优化大型语言模型(LLM)的自主能力,解决传统偏好优化方法在粒度匹配上的难题。实验表明,HPL在多个任务上优于现有方法。

arXiv:2510.03253v1 Announce Type: cross Abstract: Large Language Models (LLMs) as autonomous agents are increasingly tasked with solving complex, long-horizon problems. Aligning these agents via preference-based offline methods like Direct Preference Optimization (DPO) is a promising direction, yet it faces a critical granularity mismatch. Trajectory-level DPO provides a signal that is too coarse for precise credit assignment, while step-level DPO is often too myopic to capture the value of multi-step behaviors. To resolve this challenge, we introduce Hierarchical Preference Learning (HPL), a hierarchical framework that optimizes LLM agents by leveraging preference signals at multiple, synergistic granularities. While HPL incorporates trajectory- and step-level DPO for global and local policy stability, its core innovation lies in group-level preference optimization guided by a dual-layer curriculum. Our approach first decomposes expert trajectories into semantically coherent action groups and then generates contrasting suboptimal groups to enable preference learning at a fine-grained, sub-task level. Then, instead of treating all preference pairs equally, HPL introduces a curriculum scheduler that organizes the learning process from simple to complex. This curriculum is structured along two axes: the group length, representing sub-task complexity, and the sample difficulty, defined by the reward gap between preferred and dispreferred action groups. Experiments on three challenging agent benchmarks show that HPL outperforms existing state-of-the-art methods. Our analyses demonstrate that the hierarchical DPO loss effectively integrates preference signals across multiple granularities, while the dual-layer curriculum is crucial for enabling the agent to solve a wide range of tasks, from simple behaviors to complex multi-step sequences.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 偏好学习 自主能力 粒度匹配 分层框架
相关文章