cs.AI updates on arXiv.org 10月07日
NLEL:自然语言边缘标签提升结构化LM推理
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为NLEL的自然语言边缘标签方法,用于提升结构化语言模型推理能力,通过引入标签和调整策略,实现可解释、可审计的推理过程。

arXiv:2510.04817v1 Announce Type: new Abstract: Controllers for structured LM reasoning (e.g., Chain-of-Thought, self-consistency, and Tree-of-Thoughts) often entangle what to try next with how to execute it, exposing only coarse global knobs and yielding brittle, compute-inefficient, and hard-to-audit behavior. We introduce Natural Language Edge Labelling (NLEL), a labeller-tuner overlay that attaches a free-form natural-language directive to each search edge and translates it into a schema-bounded control vector for decoding, search (branch quotas, exploration $\beta$), generation bundle size, retrieval mixtures, and verification passes. A labeller $\Lambda$ emits labels from the parent state and a compact context; a tuner $\Psi$ maps $(P, L, C)\to \Pi$, with strict schema validation and trust-region projection around safe defaults. Downstream selection remains ToT-style with score $S=\mu+\beta\sigma$ and depth-annealed $\beta$. We show NLEL strictly generalizes CoT/ToT, prove an anytime-monotonicity property for top-$k$ selection under label-conditioned bundles, and bound selector shortfall by control-vector distortion, providing decision-relevant justification for guards like trust regions and verification passes. We instantiate $\Psi$ as a prompt-only JSON Parameter Emitter and preregister an evaluation on GSM8K, MATH (subset), StrategyQA, and ARC-Challenge with compute-aware reporting (success@compute, tokens-per-success) and ablations over $\Lambda$, $\Psi$, trust-region radius, and control quantization; preregistered forecasts anticipate accuracy gains at comparable token budgets and improved success@compute under constraints. NLEL offers an interpretable, model-agnostic interface that separates intent from execution for controllable, auditable LM inference.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

NLEL 结构化LM推理 自然语言标签 可解释性 可审计性
相关文章