cs.AI updates on arXiv.org 10月07日 12:08
LLM驱动的地图构建与修复框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种基于LLM的地图构建与修复框架,通过版本控制和边影响评分机制,在逐步观察中构建完整的拓扑图,提高地图的正确性和鲁棒性。

arXiv:2510.04195v1 Announce Type: new Abstract: Given a map description through global traversal navigation instructions (e.g., visiting each room sequentially with action signals such as north, west, etc.), an LLM can often infer the implicit spatial layout of the environment and answer user queries by providing a shortest path from a start to a destination (for instance, navigating from the lobby to a meeting room via the hall and elevator). However, such context-dependent querying becomes incapable as the environment grows much longer, motivating the need for incremental map construction that builds a complete topological graph from stepwise observations. We propose a framework for LLM-driven construction and map repair, designed to detect, localize, and correct structural inconsistencies in incrementally constructed navigation graphs. Central to our method is the Version Control, which records the full history of graph edits and their source observations, enabling fine-grained rollback, conflict tracing, and repair evaluation. We further introduce an Edge Impact Score to prioritize minimal-cost repairs based on structural reachability, path usage, and conflict propagation. To properly evaluate our approach, we create a refined version of the MANGO benchmark dataset by systematically removing non-topological actions and inherent structural conflicts, providing a cleaner testbed for LLM-driven construction and map repair. Our approach significantly improves map correctness and robustness, especially in scenarios with entangled or chained inconsistencies. Our results highlight the importance of introspective, history-aware repair mechanisms for maintaining coherent spatial memory in LLM agents.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 地图构建 修复框架 版本控制 边影响评分
相关文章