cs.AI updates on arXiv.org 10月06日 12:28
基于LLM的APR噪声减少策略
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出两种基于LLM的策略,用于减少APR过程中的噪声,包括排除难以修复的bug和验证补丁的有效性,提高APR系统的可靠性。

arXiv:2510.03217v1 Announce Type: cross Abstract: Agentic Automated Program Repair (APR) is increasingly tackling complex, repository-level bugs in industry, but ultimately agent-generated patches still need to be reviewed by a human before committing them to ensure they address the bug. Showing unlikely patches to developers can lead to substantial noise, wasting valuable developer time and eroding trust in automated code changes. We introduce two complementary LLM-based policies to reduce such noise: bug abstention and patch validation policies. Bug abstention excludes bugs that the agentic APR system is unlikely to fix. Patch validation rejects patches that are unlikely to be a good fix for the given bug. We evaluate both policies on three sets of bugs from Google's codebase, and their candidate patches generated by an internal agentic APR system. On a set of 174 human-reported bugs, removing bugs and patch trajectories rejected by our policies can raise success rates by up to 13 percentage points and 15 percentage points, respectively, and by up to 39 percentage points in combination. On null pointer exceptions and sanitizer-reported bugs with machine-generated bug reports, patch validation also improves average single-sample success rates. This two-policy approach provides a practical path to the reliable, industrial-scale deployment of agentic APR systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

APR LLM 噪声减少 代码修复 人工智能
相关文章