cs.AI updates on arXiv.org 10月06日 12:28
SIT:改进的资产分配框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为SIT的新型深度学习框架,用于解决量化金融中的稳健资产分配问题。SIT通过优化风险感知金融目标,直接学习端到端的分配策略,并在S&P 100数据集上显著优于传统和深度学习基准。

arXiv:2510.03129v1 Announce Type: cross Abstract: Robust asset allocation is a key challenge in quantitative finance, where deep-learning forecasters often fail due to objective mismatch and error amplification. We introduce the Signature-Informed Transformer (SIT), a novel framework that learns end-to-end allocation policies by directly optimizing a risk-aware financial objective. SIT's core innovations include path signatures for a rich geometric representation of asset dynamics and a signature-augmented attention mechanism embedding financial inductive biases, like lead-lag effects, into the model. Evaluated on daily S\&P 100 equity data, SIT decisively outperforms traditional and deep-learning baselines, especially when compared to predict-then-optimize models. These results indicate that portfolio-aware objectives and geometry-aware inductive biases are essential for risk-aware capital allocation in machine-learning systems. The code is available at: https://github.com/Yoontae6719/Signature-Informed-Transformer-For-Asset-Allocation

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

SIT 资产分配 深度学习 风险感知 金融
相关文章