cs.AI updates on arXiv.org 10月06日
ZeroShotOpt:高效通用黑盒优化模型
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍ZeroShotOpt,一种适用于连续黑盒优化任务的通用模型。该模型基于大规模优化轨迹进行离线强化学习,通过生成多样化景观的合成函数来学习迁移性优化策略,实现高效的零样本泛化。

arXiv:2510.03051v1 Announce Type: cross Abstract: Global optimization of expensive, derivative-free black-box functions requires extreme sample efficiency. While Bayesian optimization (BO) is the current state-of-the-art, its performance hinges on surrogate and acquisition function hyper-parameters that are often hand-tuned and fail to generalize across problem landscapes. We present ZeroShotOpt, a general-purpose, pretrained model for continuous black-box optimization tasks ranging from 2D to 20D. Our approach leverages offline reinforcement learning on large-scale optimization trajectories collected from 12 BO variants. To scale pretraining, we generate millions of synthetic Gaussian process-based functions with diverse landscapes, enabling the model to learn transferable optimization policies. As a result, ZeroShotOpt achieves robust zero-shot generalization on a wide array of unseen benchmarks, matching or surpassing the sample efficiency of leading global optimizers, including BO, while also offering a reusable foundation for future extensions and improvements. Our open-source code, dataset, and model are available at: https://github.com/jamisonmeindl/zeroshotopt

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

黑盒优化 零样本泛化 强化学习 优化算法 Bayesian优化
相关文章