cs.AI updates on arXiv.org 10月06日
FeDABoost:提升联邦学习性能与公平性
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出FeDABoost,一种融合动态提升机制和自适应梯度聚合策略的联邦学习框架,旨在提升非独立同分布环境下联邦学习的性能与公平性。

arXiv:2510.02914v1 Announce Type: cross Abstract: This work focuses on improving the performance and fairness of Federated Learning (FL) in non IID settings by enhancing model aggregation and boosting the training of underperforming clients. We propose FeDABoost, a novel FL framework that integrates a dynamic boosting mechanism and an adaptive gradient aggregation strategy. Inspired by the weighting mechanism of the Multiclass AdaBoost (SAMME) algorithm, our aggregation method assigns higher weights to clients with lower local error rates, thereby promoting more reliable contributions to the global model. In parallel, FeDABoost dynamically boosts underperforming clients by adjusting the focal loss focusing parameter, emphasizing hard to classify examples during local training. We have evaluated FeDABoost on three benchmark datasets MNIST, FEMNIST, and CIFAR10, and compared its performance with those of FedAvg and Ditto. The results show that FeDABoost achieves improved fairness and competitive performance.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

联邦学习 性能提升 公平性 FeDABoost 模型聚合
相关文章