cs.AI updates on arXiv.org 10月06日 12:27
dLLMs 水印检测框架 DMark
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出针对扩散大语言模型(dLLMs)的首次水印检测框架DMark,通过预测水印、双向水印和预测-双向水印三种策略,实现高检测率,同时保持文本质量。

arXiv:2510.02902v1 Announce Type: cross Abstract: Diffusion large language models (dLLMs) offer faster generation than autoregressive models while maintaining comparable quality, but existing watermarking methods fail on them due to their non-sequential decoding. Unlike autoregressive models that generate tokens left-to-right, dLLMs can finalize tokens in arbitrary order, breaking the causal design underlying traditional watermarks. We present DMark, the first watermarking framework designed specifically for dLLMs. DMark introduces three complementary strategies to restore watermark detectability: predictive watermarking uses model-predicted tokens when actual context is unavailable; bidirectional watermarking exploits both forward and backward dependencies unique to diffusion decoding; and predictive-bidirectional watermarking combines both approaches to maximize detection strength. Experiments across multiple dLLMs show that DMark achieves 92.0-99.5% detection rates at 1% false positive rate while maintaining text quality, compared to only 49.6-71.2% for naive adaptations of existing methods. DMark also demonstrates robustness against text manipulations, establishing that effective watermarking is feasible for non-autoregressive language models.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

dLLMs 水印检测 模型安全性
相关文章