cs.AI updates on arXiv.org 10月06日
基于多传感器卫星数据的海藻暴监测框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于多传感器卫星数据的自监督机器学习框架,用于监测有害藻华的严重程度和物种分类。通过融合多种卫星遥感数据,该框架可生成无需标注数据集的藻华监测产品,并已在墨西哥湾和南加州进行验证。

arXiv:2510.02763v1 Announce Type: cross Abstract: We present a self-supervised machine learning framework for detecting and mapping harmful algal bloom (HAB) severity and speciation using multi-sensor satellite data. By fusing reflectance data from operational instruments (VIIRS, MODIS, Sentinel-3, PACE) with TROPOMI solar-induced fluorescence (SIF), our framework, called SIT-FUSE, generates HAB severity and speciation products without requiring per-instrument labeled datasets. The framework employs self-supervised representation learning, hierarchical deep clustering to segment phytoplankton concentrations and speciations into interpretable classes, validated against in-situ data from the Gulf of Mexico and Southern California (2018-2025). Results show strong agreement with total phytoplankton, Karenia brevis, Alexandrium spp., and Pseudo-nitzschia spp. measurements. This work advances scalable HAB monitoring in label-scarce environments while enabling exploratory analysis via hierarchical embeddings: a critical step toward operationalizing self-supervised learning for global aquatic biogeochemistry.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

自监督学习 卫星遥感 有害藻华监测 多传感器数据融合 机器学习
相关文章