cs.AI updates on arXiv.org 10月06日
LLM工具选择攻击:风险与防御策略
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文揭示了LLM工具选择过程中存在的攻击风险,并提出防御策略。

arXiv:2510.02554v1 Announce Type: cross Abstract: As LLMs increasingly power agents that interact with external tools, tool use has become an essential mechanism for extending their capabilities. These agents typically select tools from growing databases or marketplaces to solve user tasks, creating implicit competition among tool providers and developers for visibility and usage. In this paper, we show that this selection process harbors a critical vulnerability: by iteratively manipulating tool names and descriptions, adversaries can systematically bias agents toward selecting specific tools, gaining unfair advantage over equally capable alternatives. We present ToolTweak, a lightweight automatic attack that increases selection rates from a baseline of around 20% to as high as 81%, with strong transferability between open-source and closed-source models. Beyond individual tools, we show that such attacks cause distributional shifts in tool usage, revealing risks to fairness, competition, and security in emerging tool ecosystems. To mitigate these risks, we evaluate two defenses: paraphrasing and perplexity filtering, which reduce bias and lead agents to select functionally similar tools more equally. All code will be open-sourced upon acceptance.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 工具选择 攻击风险 防御策略 工具生态系统
相关文章