cs.AI updates on arXiv.org 10月06日 12:26
GANs数据增强在极端值预测中的应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种基于GANs和SMOTE的数据增强框架,用于极端值预测。研究对比了不同数据增强模型,并探讨了Conv-LSTM和BD-LSTM在预测极端值时的互补性,结果表明SMOTE策略在短期和长期预测中均表现出优越的适应性。

arXiv:2510.02407v1 Announce Type: cross Abstract: Data augmentation with generative adversarial networks (GANs) has been popular for class imbalance problems, mainly for pattern classification and computer vision-related applications. Extreme value forecasting is a challenging field that has various applications from finance to climate change problems. In this study, we present a data augmentation framework for extreme value forecasting. In this framework, our focus is on forecasting extreme values using deep learning models in combination with data augmentation models such as GANs and synthetic minority oversampling technique (SMOTE). We use deep learning models such as convolutional long short-term memory (Conv-LSTM) and bidirectional long short-term memory (BD-LSTM) networks for multistep ahead prediction featuring extremes. We investigate which data augmentation models are the most suitable, taking into account the prediction accuracy overall and at extreme regions, along with computational efficiency. We also present novel strategies for incorporating data augmentation, considering extreme values based on a relevance function. Our results indicate that the SMOTE-based strategy consistently demonstrated superior adaptability, leading to improved performance across both short- and long-horizon forecasts. Conv-LSTM and BD-LSTM exhibit complementary strengths: the former excels in periodic, stable datasets, while the latter performs better in chaotic or non-stationary sequences.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

数据增强 极端值预测 GANs SMOTE 深度学习
相关文章