cs.AI updates on arXiv.org 10月06日 12:26
LRM评估漏洞:基准污染及其检测困境
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文揭示了LRM评估中基准污染的严重问题,发现绕过检测的方法简单易行,并提出需要更高级的检测方法和可靠的评估协议。

arXiv:2510.02386v1 Announce Type: cross Abstract: Leaderboards for LRMs have turned evaluation into a competition, incentivizing developers to optimize directly on benchmark suites. A shortcut to achieving higher rankings is to incorporate evaluation benchmarks into the training data, thereby yielding inflated performance, known as benchmark contamination. Surprisingly, our studies find that evading contamination detections for LRMs is alarmingly easy. We focus on the two scenarios where contamination may occur in practice: (I) when the base model evolves into LRM via SFT and RL, we find that contamination during SFT can be originally identified by contamination detection methods. Yet, even a brief GRPO training can markedly conceal contamination signals that most detection methods rely on. Further empirical experiments and theoretical analysis indicate that PPO style importance sampling and clipping objectives are the root cause of this detection concealment, indicating that a broad class of RL methods may inherently exhibit similar concealment capability; (II) when SFT contamination with CoT is applied to advanced LRMs as the final stage, most contamination detection methods perform near random guesses. Without exposure to non-members, contaminated LRMs would still have more confidence when responding to those unseen samples that share similar distributions to the training set, and thus, evade existing memorization-based detection methods. Together, our findings reveal the unique vulnerability of LRMs evaluations: Model developers could easily contaminate LRMs to achieve inflated leaderboards performance while leaving minimal traces of contamination, thereby strongly undermining the fairness of evaluation and threatening the integrity of public leaderboards. This underscores the urgent need for advanced contamination detection methods and trustworthy evaluation protocols tailored to LRMs.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LRM 基准污染 检测困境 评估漏洞 模型开发
相关文章