cs.AI updates on arXiv.org 10月06日
图中心多模态检测器识别智能电网被动攻击
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于图中心的多模态检测器,融合物理层和行为指标,用于检测智能电网中的被动攻击。该方法在联邦学习框架下训练,使用合成数据集进行验证,实现高精度检测,适用于非独立同分布的智能电网部署。

arXiv:2510.02371v1 Announce Type: cross Abstract: Smart grids are exposed to passive eavesdropping, where attackers listen silently to communication links. Although no data is actively altered, such reconnaissance can reveal grid topology, consumption patterns, and operational behavior, creating a gateway to more severe targeted attacks. Detecting this threat is difficult because the signals it produces are faint, short-lived, and often disappear when traffic is examined by a single node or along a single timeline. This paper introduces a graph-centric, multimodal detector that fuses physical-layer and behavioral indicators over ego-centric star subgraphs and short temporal windows to detect passive attacks. To capture stealthy perturbations, a two-stage encoder is introduced: graph convolution aggregates spatial context across ego-centric star subgraphs, while a bidirectional GRU models short-term temporal dependencies. The encoder transforms heterogeneous features into a unified spatio-temporal representation suitable for classification. Training occurs in a federated learning setup under FedProx, improving robustness to heterogeneous local raw data and contributing to the trustworthiness of decentralized training; raw measurements remain on client devices. A synthetic, standards-informed dataset is generated to emulate heterogeneous HAN/NAN/WAN communications with wireless-only passive perturbations, event co-occurrence, and leak-safe splits. The model achieves a testing accuracy of 98.32% per-timestep (F1_{attack}=0.972) and 93.35% per-sequence at 0.15% FPR using a simple decision rule with run-length m=2 and threshold $\tau=0.55$. The results demonstrate that combining spatial and temporal context enables reliable detection of stealthy reconnaissance while maintaining low false-positive rates, making the approach suitable for non-IID federated smart-grid deployments.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

智能电网 被动攻击 联邦学习 图中心检测 多模态检测
相关文章