cs.AI updates on arXiv.org 10月06日
非对比自监督学习在网络安全检测中的应用
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了非对比自监督学习在网络安全检测中的应用,通过对比实验验证了其在攻击检测中的竞争力。

arXiv:2510.02349v1 Announce Type: cross Abstract: Network intrusion detection, a well-explored cybersecurity field, has predominantly relied on supervised learning algorithms in the past two decades. However, their limitations in detecting only known anomalies prompt the exploration of alternative approaches. Motivated by the success of self-supervised learning in computer vision, there is a rising interest in adapting this paradigm for network intrusion detection. While prior research mainly delved into contrastive self-supervised methods, the efficacy of non-contrastive methods, in conjunction with encoder architectures serving as the representation learning backbone and augmentation strategies that determine what is learned, remains unclear for effective attack detection. This paper compares the performance of five non-contrastive self-supervised learning methods using three encoder architectures and six augmentation strategies. Ninety experiments are systematically conducted on two network intrusion detection datasets, UNSW-NB15 and 5G-NIDD. For each self-supervised model, the combination of encoder architecture and augmentation method yielding the highest average precision, recall, F1-score, and AUCROC is reported. Furthermore, by comparing the best-performing models to two unsupervised baselines, DeepSVDD, and an Autoencoder, we showcase the competitiveness of the non-contrastive methods for attack detection. Code at: https://github.com/renje4z335jh4/non_contrastive_SSL_NIDS

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

网络安全 自监督学习 攻击检测
相关文章