cs.AI updates on arXiv.org 10月06日
CRACQ:多维文本评估框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出CRACQ,一个针对五项特质(连贯性、严谨性、适宜性、完整性、质量)的多维评估框架,扩展了基于特质自动作文评分(AES)的评估方法,涵盖多种机器生成文本,实现可解释的自动评估。

arXiv:2510.02337v1 Announce Type: cross Abstract: This paper presents CRACQ, a multi-dimensional evaluation framework tailored to evaluate documents across f i v e specific traits: Coherence, Rigor, Appropriateness, Completeness, and Quality. Building on insights from traitbased Automated Essay Scoring (AES), CRACQ expands its fo-cus beyond essays to encompass diverse forms of machine-generated text, providing a rubricdriven and interpretable methodology for automated evaluation. Unlike singlescore approaches, CRACQ integrates linguistic, semantic, and structural signals into a cumulative assessment, enabling both holistic and trait-level analysis. Trained on 500 synthetic grant pro-posals, CRACQ was benchmarked against an LLM-as-a-judge and further tested on both strong and weak real applications. Preliminary results in-dicate that CRACQ produces more stable and interpretable trait-level judgments than direct LLM evaluation, though challenges in reliability and domain scope remain

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

CRACQ 文本评估 自动作文评分 机器生成文本 多维评估
相关文章