cs.AI updates on arXiv.org 10月06日
SelfJudge:加速LLM推理的自动验证器
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出SelfJudge,通过目标模型的自监督训练来训练验证器,实现了跨NLP任务的自动验证器训练,提高了LLM推理的准确性。

arXiv:2510.02329v1 Announce Type: cross Abstract: Speculative decoding accelerates LLM inference by verifying candidate tokens from a draft model against a larger target model. Recent judge decoding boosts this process by relaxing verification criteria by accepting draft tokens that may exhibit minor discrepancies from target model output, but existing methods are restricted by their reliance on human annotations or tasks with verifiable ground truths, limiting generalizability across diverse NLP tasks. We propose SelfJudge, which trains judge verifiers via self-supervision of the target model. Our method measures semantic preservation by assessing whether token-substituted responses preserve the meaning of original responses, enabling automatic verifier training across diverse NLP tasks. Our experiments show SelfJudge achieves superior inference-accuracy trade-offs than judge decoding baselines, offering a broadly applicable solution for faster LLM inference.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

SelfJudge LLM推理 自动验证器 NLP任务 自监督
相关文章