cs.AI updates on arXiv.org 10月06日
RA-FSM:基于有限状态机的GPT研究助手
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为RA-FSM的模块化研究助手,通过有限状态机控制GPT生成,有效解决大语言模型在文献综述中的幻觉和误引问题,并在光子学领域进行了验证。

arXiv:2510.02326v1 Announce Type: cross Abstract: Large language models accelerate literature synthesis but can hallucinate and mis-cite, limiting their usefulness in expert workflows. We present RA-FSM (Research Assistant - Finite State Machine), a modular GPT-based research assistant that wraps generation in a finite-state control loop: Relevance -> Confidence -> Knowledge. The system is grounded in vector retrieval and a deterministic citation pipeline. The controller filters out-of-scope queries, scores answerability, decomposes questions, and triggers retrieval only when needed, and emits answers with confidence labels and in-corpus, de-duplicated references. A ranked-tier ingestion workflow constructs a domain knowledge base from journals, conferences, indices, preprints, and patents, writing both to a dense vector index and to a relational store of normalized metrics. We implement the system for photonics and evaluate it on six task categories: analytical reasoning, numerical analysis, methodological critique, comparative synthesis, factual extraction, and application design. In blinded A/B reviews, domain experts prefer RA-FSM to both a strong Notebook LM (NLM) and a vanilla Default GPT API call single-pass baseline, citing stronger boundary-condition handling and more defensible evidence use. Coverage and novelty analyses indicate that RA-FSM explores beyond the NLM while incurring tunable latency and cost overheads. The design emphasizes transparent, well-cited answers for high-stakes technical work and is generalizable to other scientific domains.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大语言模型 文献综述 光子学
相关文章