cs.AI updates on arXiv.org 10月06日
NCV:提升大型语言模型推理验证效率
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出Node-wise Consistency Verification(NCV)框架,通过节点级别的轻量级一致性检查,提高大型语言模型推理验证的效率和可解释性。实验表明,NCV在公共数据集上比传统方法提升了10%至25%的F1分数,同时消耗的token数量仅为传统方法的1/6至1/58。

arXiv:2510.02816v1 Announce Type: new Abstract: Verifying multi-step reasoning in large language models is difficult due to imprecise error localization and high token costs. Existing methods either assess entire reasoning chains, suffering attention dilution, or rely on expensive multi-sampling. We introduce Node-wise Consistency Verification (NCV), a training-free framework that recasts verification as lightweight binary consistency checks at the node level. By decomposing the chain of thought into interconnected verification nodes, NCV precisely localizes errors and avoids unnecessary long-form generation. Experiments demonstrate that our approach enhances interpretability and efficiency, presenting a scalable solution for reliable LLM reasoning verification. On public datasets, NCV achieves a 10\% to 25\% improvement in F1 scores over baselines while utilizing $6\times$~$58\times$ fewer tokens than traditional methods like CoT-based verifiers.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 推理验证 效率提升 NCV框架 可解释性
相关文章