cs.AI updates on arXiv.org 10月06日
AutoMaAS:自动多智能体架构搜索框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出AutoMaAS,一个基于神经架构搜索原理的自我进化的多智能体架构搜索框架,通过动态操作生命周期管理和自动化机器学习技术自动发现最优智能体配置。实验证明,AutoMaAS在性能提升的同时降低了推理成本,为大型语言模型时代自动多智能体系统设计提供新范式。

arXiv:2510.02669v1 Announce Type: new Abstract: Multi-agent systems powered by large language models have demonstrated remarkable capabilities across diverse domains, yet existing automated design approaches seek monolithic solutions that fail to adapt resource allocation based on query complexity and domain requirements. This paper introduces AutoMaAS, a self-evolving multi-agent architecture search framework that leverages neural architecture search principles to automatically discover optimal agent configurations through dynamic operator lifecycle management and automated machine learning techniques. Our approach incorporates four key innovations: (1) automatic operator generation, fusion, and elimination based on performance-cost analysis, (2) dynamic cost-aware optimization with real-time parameter adjustment, (3) online feedback integration for continuous architecture refinement, and (4) enhanced interpretability through decision tracing mechanisms. Extensive experiments across six benchmarks demonstrate that AutoMaAS achieves 1.0-7.1\% performance improvement while reducing inference costs by 3-5\% compared to state-of-the-art methods. The framework shows superior transferability across datasets and LLM backbones, establishing a new paradigm for automated multi-agent system design in the era of large language models.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多智能体系统 架构搜索 神经网络 语言模型 性能优化
相关文章