cs.AI updates on arXiv.org 10月06日
基于AI的地质论文问答系统Geolog-IA
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了Geolog-IA,一款基于Llama 3.1和Gemini 2.5语言模型,结合RAG架构和SQLite数据库,用于回答厄瓜多尔中央大学地质论文相关问题的对话系统。系统性能评价结果显示高一致性及准确性,并具备便捷的Web界面,可支持教育、培训和科研工作。

arXiv:2510.02653v1 Announce Type: new Abstract: This study presents the development of Geolog-IA, a novel conversational system based on artificial intelligence that responds naturally to questions about geology theses from the Central University of Ecuador. Our proposal uses the Llama 3.1 and Gemini 2.5 language models, which are complemented by a Retrieval Augmented Generation (RAG) architecture and an SQLite database. This strategy allows us to overcome problems such as hallucinations and outdated knowledge. The evaluation of Geolog-IA's performance with the BLEU metric reaches an average of 0.87, indicating high consistency and accuracy in the responses generated. The system offers an intuitive, web-based interface that facilitates interaction and information retrieval for directors, teachers, students, and administrative staff at the institution. This tool can be a key support in education, training, and research and establishes a basis for future applications in other disciplines.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI对话系统 地质论文问答 语言模型 RAG架构
相关文章