cs.AI updates on arXiv.org 10月06日
基于LLM的智能电网电动车交互框架
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于多模态大语言模型的框架,用于处理电动车传感器数据并生成自然语言警报,以提升城市驾驶安全。

arXiv:2510.02592v1 Announce Type: new Abstract: The integration of electric vehicles (EVs) into smart grids presents unique opportunities to enhance both transportation systems and energy networks. However, ensuring safe and interpretable interactions between drivers, vehicles, and the surrounding environment remains a critical challenge. This paper presents a multi-modal large language model (LLM)-based framework to process multimodal sensor data - such as object detection, semantic segmentation, and vehicular telemetry - and generate natural-language alerts for drivers. The framework is validated using real-world data collected from instrumented vehicles driving on urban roads, ensuring its applicability to real-world scenarios. By combining visual perception (YOLOv8), geocoded positioning, and CAN bus telemetry, the framework bridges raw sensor data and driver comprehension, enabling safer and more informed decision-making in urban driving scenarios. Case studies using real data demonstrate the framework's effectiveness in generating context-aware alerts for critical situations, such as proximity to pedestrians, cyclists, and other vehicles. This paper highlights the potential of LLMs as assistive tools in e-mobility, benefiting both transportation systems and electric networks by enabling scalable fleet coordination, EV load forecasting, and traffic-aware energy planning. Index Terms - Electric vehicles, visual perception, large language models, YOLOv8, semantic segmentation, CAN bus, prompt engineering, smart grid.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

电动车 智能电网 大语言模型 YOLOv8 语义分割
相关文章