cs.AI updates on arXiv.org 10月06日
CSPP强化学习算法性能比较研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文针对集装箱堆场规划(CSPP)问题,开发了一个Gym环境,评估了DQN、QR-DQN、A2C、PPO和TRPO等五种强化学习算法在不同复杂度场景下的性能,揭示了算法选择和问题表述对CSPP的重要性。

arXiv:2510.02589v1 Announce Type: new Abstract: Container stowage planning (CSPP) is a critical component of maritime transportation and terminal operations, directly affecting supply chain efficiency. Owing to its complexity, CSPP has traditionally relied on human expertise. While reinforcement learning (RL) has recently been applied to CSPP, systematic benchmark comparisons across different algorithms remain limited. To address this gap, we develop a Gym environment that captures the fundamental features of CSPP and extend it to include crane scheduling in both multi-agent and single-agent formulations. Within this framework, we evaluate five RL algorithms: DQN, QR-DQN, A2C, PPO, and TRPO under multiple scenarios of varying complexity. The results reveal distinct performance gaps with increasing complexity, underscoring the importance of algorithm choice and problem formulation for CSPP. Overall, this paper benchmarks multiple RL methods for CSPP while providing a reusable Gym environment with crane scheduling, thus offering a foundation for future research and practical deployment in maritime logistics.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

CSPP 强化学习 算法性能 集装箱堆场规划
相关文章