cs.AI updates on arXiv.org 10月03日 12:19
QSpec:高效高保真量化LLM新范式
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出QSpec,一种新型量化范式,通过结合低精度联合量化和高精度权重量化,实现高效且高保真的LLM量化。QSpec在批量设置中,速度比现有方法快1.55倍,且无需重新训练或使用辅助模型。

arXiv:2410.11305v3 Announce Type: replace-cross Abstract: Quantization is widely adopted to accelerate inference and reduce memory consumption in large language models (LLMs). While activation-weight joint quantization enables efficient low-precision decoding, it suffers from substantial performance degradation on multi-step reasoning tasks. We propose QSpec, a novel quantization paradigm that decouples efficiency from quality by integrating two complementary schemes via speculative decoding: low-precision joint quantization for fast drafting and high-precision weight-only quantization for accurate verification. QSpec reuses both weights and KV cache across stages, enabling near-zero-cost switching without retraining or auxiliary models. Compared to high-precision baselines, QSpec achieves up to 1.64x speedup without quality degradation, and outperforms state-of-the-art speculative decoding methods by up to 1.55x in batched settings. Furthermore, QSpec supports plug-and-play deployment and generalizes well across model scales, quantization methods, and workloads. These properties make QSpec a practical and scalable solution for high-fidelity quantized LLM serving under memory-constrained scenarios. Our code is available at https://github.com/hku-netexplo-lab/QSpec.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

量化 LLM QSpec 高效 高保真
相关文章