cs.AI updates on arXiv.org 10月03日 12:18
机器学习助力实验室外人体运动评估
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨利用机器学习和可穿戴传感器进行人体运动分析的新机遇,比较了3D人体姿态估计模型与惯性测量单元(IMU)的性能,并强调了两种技术在成本、可及性和精度方面的权衡。

arXiv:2510.02264v1 Announce Type: cross Abstract: Advances in machine learning and wearable sensors offer new opportunities for capturing and analyzing human movement outside specialized laboratories. Accurate assessment of human movement under real-world conditions is essential for telemedicine, sports science, and rehabilitation. This preclinical benchmark compares monocular video-based 3D human pose estimation models with inertial measurement units (IMUs), leveraging the VIDIMU dataset containing a total of 13 clinically relevant daily activities which were captured using both commodity video cameras and five IMUs. During this initial study only healthy subjects were recorded, so results cannot be generalized to pathological cohorts. Joint angles derived from state-of-the-art deep learning frameworks (MotionAGFormer, MotionBERT, MMPose 2D-to-3D pose lifting, and NVIDIA BodyTrack) were evaluated against joint angles computed from IMU data using OpenSim inverse kinematics following the Human3.6M dataset format with 17 keypoints. Among them, MotionAGFormer demonstrated superior performance, achieving the lowest overall RMSE ($9.27\deg \pm 4.80\deg$) and MAE ($7.86\deg \pm 4.18\deg$), as well as the highest Pearson correlation ($0.86 \pm 0.15$) and the highest coefficient of determination $R^{2}$ ($0.67 \pm 0.28$). The results reveal that both technologies are viable for out-of-the-lab kinematic assessment. However, they also highlight key trade-offs between video- and sensor-based approaches including costs, accessibility, and precision. This study clarifies where off-the-shelf video models already provide clinically promising kinematics in healthy adults and where they lag behind IMU-based estimates while establishing valuable guidelines for researchers and clinicians seeking to develop robust, cost-effective, and user-friendly solutions for telehealth and remote patient monitoring.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

机器学习 人体运动评估 可穿戴传感器 姿态估计 IMU
相关文章