cs.AI updates on arXiv.org 10月03日
AI偏见赏金计划综述
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文综述了现有的AI偏见赏金计划,分析了其组织方式、参与情况和学术文献,并探讨了如何降低技术门槛以增加参与度。

arXiv:2510.02036v1 Announce Type: cross Abstract: Current bias evaluation methods rarely engage with communities impacted by AI systems. Inspired by bug bounties, bias bounties have been proposed as a reward-based method that involves communities in AI bias detection by asking users of AI systems to report biases they encounter when interacting with such systems. In the absence of a state-of-the-art review, this survey aimed to identify and analyse existing AI bias bounty programmes and to present academic literature on bias bounties. Google, Google Scholar, PhilPapers, and IEEE Xplore were searched, and five bias bounty programmes, as well as five research publications, were identified. All bias bounties were organised by U.S.-based organisations as time-limited contests, with public participation in four programmes and prize pools ranging from 7,000 to 24,000 USD. The five research publications included a report on the application of bug bounties to algorithmic harms, an article addressing Twitter's bias bounty, a proposal for bias bounties as an institutional mechanism to increase AI scrutiny, a workshop discussing bias bounties from queer perspectives, and an algorithmic framework for bias bounties. We argue that reducing the technical requirements to enter bounty programmes is important to include those without coding experience. Given the limited adoption of bias bounties, future efforts should explore the transferability of the best practices from bug bounties and examine how such programmes can be designed to be sensitive to underrepresented groups while lowering adoption barriers for organisations.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI偏见 赏金计划 社区参与 技术门槛 算法危害
相关文章