cs.AI updates on arXiv.org 10月03日
LiLa-Net:高效交通场景3D自动编码器
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为LiLa-Net的3D自动编码器架构,通过仅使用LiDAR点云,从真实交通环境中提取高效特征。该系统采用跳跃连接概念提升性能,同时降低资源消耗,并达到高效且代表性的潜在空间,实现点云的高精度重建。

arXiv:2510.02028v1 Announce Type: cross Abstract: This work proposed a 3D autoencoder architecture, named LiLa-Net, which encodes efficient features from real traffic environments, employing only the LiDAR's point clouds. For this purpose, we have real semi-autonomous vehicle, equipped with Velodyne LiDAR. The system leverage skip connections concept to improve the performance without using extensive resources as the state-of-the-art architectures. Key changes include reducing the number of encoder layers and simplifying the skip connections, while still producing an efficient and representative latent space which allows to accurately reconstruct the original point cloud. Furthermore, an effective balance has been achieved between the information carried by the skip connections and the latent encoding, leading to improved reconstruction quality without compromising performance. Finally, the model demonstrates strong generalization capabilities, successfully reconstructing objects unrelated to the original traffic environment.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LiLa-Net 3D自动编码器 交通场景 LiDAR 跳跃连接
相关文章