cs.AI updates on arXiv.org 10月03日
ZK-WAGON:基于ZK-SNARKs的图像生成模型水印系统
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为ZK-WAGON的新型水印系统,用于图像生成模型的水印,采用ZK-SNARKs技术,保障了图像生成模型的原创性和安全性,同时减少了对模型内部信息的暴露。

arXiv:2510.01967v1 Announce Type: cross Abstract: As image generation models grow increasingly powerful and accessible, concerns around authenticity, ownership, and misuse of synthetic media have become critical. The ability to generate lifelike images indistinguishable from real ones introduces risks such as misinformation, deepfakes, and intellectual property violations. Traditional watermarking methods either degrade image quality, are easily removed, or require access to confidential model internals - making them unsuitable for secure and scalable deployment. We are the first to introduce ZK-WAGON, a novel system for watermarking image generation models using the Zero-Knowledge Succinct Non Interactive Argument of Knowledge (ZK-SNARKs). Our approach enables verifiable proof of origin without exposing model weights, generation prompts, or any sensitive internal information. We propose Selective Layer ZK-Circuit Creation (SL-ZKCC), a method to selectively convert key layers of an image generation model into a circuit, reducing proof generation time significantly. Generated ZK-SNARK proofs are imperceptibly embedded into a generated image via Least Significant Bit (LSB) steganography. We demonstrate this system on both GAN and Diffusion models, providing a secure, model-agnostic pipeline for trustworthy AI image generation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

ZK-SNARKs 图像生成模型 水印技术 数据安全 AI
相关文章