cs.AI updates on arXiv.org 10月03日 12:18
GNN性能提升:RoGRAD框架与LLM增强
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出RoGRAD框架,通过检索增强对比细化,解决图神经网络在现实场景下的性能不足问题,对比传统方法与LLM增强框架,实现82.43%的平均性能提升。

arXiv:2510.01910v1 Announce Type: cross Abstract: Graph Neural Networks (GNNs) are widely adopted in Web-related applications, serving as a core technique for learning from graph-structured data, such as text-attributed graphs. Yet in real-world scenarios, such graphs exhibit deficiencies that substantially undermine GNN performance. While prior GNN-based augmentation studies have explored robustness against individual imperfections, a systematic understanding of how graph-native and Large Language Models (LLMs) enhanced methods behave under compound deficiencies is still missing. Specifically, there has been no comprehensive investigation comparing conventional approaches and recent LLM-on-graph frameworks, leaving their merits unclear. To fill this gap, we conduct the first empirical study that benchmarks these two lines of methods across diverse graph deficiencies, revealing overlooked vulnerabilities and challenging the assumption that LLM augmentation is consistently superior. Building on empirical findings, we propose Robust Graph Learning via Retrieval-Augmented Contrastive Refinement (RoGRAD) framework. Unlike prior one-shot LLM-as-Enhancer designs, RoGRAD is the first iterative paradigm that leverages Retrieval-Augmented Generation (RAG) to inject retrieval-grounded augmentations by supplying class-consistent, diverse augmentations and enforcing discriminative representations through iterative graph contrastive learning. It transforms LLM augmentation for graphs from static signal injection into dynamic refinement. Extensive experiments demonstrate RoGRAD's superiority over both conventional GNN- and LLM-enhanced baselines, achieving up to 82.43% average improvement.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Graph Neural Networks Robust Learning LLM Augmentation Graph Deficiencies Performance Improvement
相关文章