cs.AI updates on arXiv.org 10月03日
无人机辅助联邦多模态学习研究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究无人机辅助联邦多模态学习,旨在最小化系统延迟并提供收敛分析。通过无人机网络进行数据收集、模型训练,并与基站协作构建全局模型,利用多模态感知提高模型准确性和泛化能力。提出高效迭代优化算法,解决计算复杂性问题,并进行了理论收敛分析,实验表明该框架在不同数据设置下优于现有方法。

arXiv:2510.01717v1 Announce Type: cross Abstract: This paper investigates federated multimodal learning (FML) assisted by unmanned aerial vehicles (UAVs) with a focus on minimizing system latency and providing convergence analysis. In this framework, UAVs are distributed throughout the network to collect data, participate in model training, and collaborate with a base station (BS) to build a global model. By utilizing multimodal sensing, the UAVs overcome the limitations of unimodal systems, enhancing model accuracy, generalization, and offering a more comprehensive understanding of the environment. The primary objective is to optimize FML system latency in UAV networks by jointly addressing UAV sensing scheduling, power control, trajectory planning, resource allocation, and BS resource management. To address the computational complexity of our latency minimization problem, we propose an efficient iterative optimization algorithm combining block coordinate descent and successive convex approximation techniques, which provides high-quality approximate solutions. We also present a theoretical convergence analysis for the UAV-assisted FML framework under a non-convex loss function. Numerical experiments demonstrate that our FML framework outperforms existing approaches in terms of system latency and model training performance under different data settings.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

联邦学习 多模态学习 无人机 系统延迟 收敛分析
相关文章