cs.AI updates on arXiv.org 10月03日
PyramidStyler:突破式神经网络风格迁移模型
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出PyramidStyler,一种基于Transformer的神经网络风格迁移模型,有效应对复杂风格和高清输入的挑战。通过引入金字塔位置编码和强化学习优化,实现高效率、实时高质艺术渲染。

arXiv:2510.01715v1 Announce Type: cross Abstract: Neural Style Transfer (NST) has evolved from Gatys et al.'s (2015) CNN-based algorithm, enabling AI-driven artistic image synthesis. However, existing CNN and transformer-based models struggle to scale efficiently to complex styles and high-resolution inputs. We introduce PyramidStyler, a transformer framework with Pyramidal Positional Encoding (PPE): a hierarchical, multi-scale encoding that captures both local details and global context while reducing computational load. We further incorporate reinforcement learning to dynamically optimize stylization, accelerating convergence. Trained on Microsoft COCO and WikiArt, PyramidStyler reduces content loss by 62.6% (to 2.07) and style loss by 57.4% (to 0.86) after 4000 epochs--achieving 1.39 s inference--and yields further improvements (content 2.03; style 0.75) with minimal speed penalty (1.40 s) when using RL. These results demonstrate real-time, high-quality artistic rendering, with broad applications in media and design.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

神经网络风格迁移 Transformer 金字塔位置编码 强化学习 艺术渲染
相关文章