cs.AI updates on arXiv.org 10月03日 12:17
LLM处理复合任务机制探究
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究了大型语言模型在解决复合任务时的机制,发现其存在‘复合性差距’,并通过分析残差流激活,识别出两种处理机制:一种通过复合方式计算,另一种直接计算。机制选择与嵌入空间几何有关。

arXiv:2510.01685v1 Announce Type: cross Abstract: While large language models (LLMs) appear to be increasingly capable of solving compositional tasks, it is an open question whether they do so using compositional mechanisms. In this work, we investigate how feedforward LLMs solve two-hop factual recall tasks, which can be expressed compositionally as $g(f(x))$. We first confirm that modern LLMs continue to suffer from the "compositionality gap": i.e. their ability to compute both $z = f(x)$ and $y = g(z)$ does not entail their ability to compute the composition $y = g(f(x))$. Then, using logit lens on their residual stream activations, we identify two processing mechanisms, one which solves tasks $\textit{compositionally}$, computing $f(x)$ along the way to computing $g(f(x))$, and one which solves them $\textit{directly}$, without any detectable signature of the intermediate variable $f(x)$. Finally, we find that which mechanism is employed appears to be related to the embedding space geometry, with the idiomatic mechanism being dominant in cases where there exists a linear mapping from $x$ to $g(f(x))$ in the embedding spaces. We fully release our data and code at: https://github.com/apoorvkh/composing-functions .

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 复合任务 机制研究 嵌入空间 残差流激活
相关文章