cs.AI updates on arXiv.org 10月03日
多模态内容分析框架构建
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种高效的多模态内容分析框架,融合预训练模型,将视频转化为时序半结构化数据格式,进一步转换为可查询的知识图谱,支持持续学习。

arXiv:2510.01513v1 Announce Type: cross Abstract: Analysis of multi-modal content can be tricky, computationally expensive, and require a significant amount of engineering efforts. Lots of work with pre-trained models on static data is out there, yet fusing these opensource models and methods with complex data such as videos is relatively challenging. In this paper, we present a framework that enables efficiently prototyping pipelines for multi-modal content analysis. We craft a candidate recipe for a pipeline, marrying a set of pre-trained models, to convert videos into a temporal semi-structured data format. We translate this structure further to a frame-level indexed knowledge graph representation that is query-able and supports continual learning, enabling the dynamic incorporation of new domain-specific knowledge through an interactive medium.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多模态内容分析 预训练模型 知识图谱 持续学习 视频分析
相关文章