cs.AI updates on arXiv.org 10月03日
AI助力早期药物发现:新型生成框架提升结构多样性
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种新型AI生成框架,平衡药效团相似性与活性分子结构多样性,加速药物发现过程。通过实例研究证实,该框架能生成具有高药效团保真度和结构创新性的化合物,具有潜在的功能创新和专利价值。

arXiv:2510.01480v1 Announce Type: cross Abstract: The integration of artificial intelligence (AI) in early-stage drug discovery offers unprecedented opportunities for exploring chemical space and accelerating hit-to-lead optimization. However, docking optimization in generative approaches is computationally expensive and may lead to inaccurate results. Here, we present a novel generative framework that balances pharmacophore similarity to reference compounds with structural diversity from active molecules. The framework allows users to provide custom reference sets, including FDA-approved drugs or clinical candidates, and guides the \textit{de novo} generation of potential therapeutics. We demonstrate its applicability through a case study targeting estrogen receptor modulators and antagonists for breast cancer. The generated compounds maintain high pharmacophoric fidelity to known active molecules while introducing substantial structural novelty, suggesting strong potential for functional innovation and patentability. Comprehensive evaluation of the generated molecules against common drug-like properties confirms the robustness and pharmaceutical relevance of the approach.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI药物发现 生成框架 结构多样性
相关文章